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Abstract— In motorsports there are typically long race tracks with the result that the racecars’ positions can not be surveyed easily.
Professional motorsports series – such as the famous Formula 1 – introduced car tracking visualizations where the position of each
participant is displayed on a virtual map. In contrast to professional motorsports series, in amateur motorsports dense data, which
is crucial for accurate tracking, is often not acquired. In our paper, we present ideas that allow car tracking that is informative and
visually pleasing using sparser data. To this end, we propose different strategies for data integration as well as for interpolation and
approximation, respectively, and introduce a visualization that displays the inevitable uncertainty of each racecar’s position.

Index Terms—Motorsports, tracking, uncertainty, visualization

1 INTRODUCTION

Since its beginnings, motorsports belongs to those sports which are
highly influenced and aided by electronics. In particular, the time-
keepers make use of chronometers whose precision and computing
capabilities have undergone a continuous evolution. But not only the
acquisition of data – such as obtaining precise daytimes for the pass-
ing of all participants – but also the processing and presentation of
information in motorsports improve year by year.

On the one hand the quality of data improves (time measurement
in sports can nowadays be done with a resolution of 1/250.000th of a
second or even finer), on the other hand its quantity rises: there are
additional sector times, video-finish recording, video-surveillance, car
tracking data and many more. Especially when keeping an eye on
professional motorsports, such as Formula 1, World Rallye Champi-
onship, Deutsche Tourenwagen Masters etc., this becomes evident:

• The race control finds all the information which is necessary for
a complete overview about what happens in a race. This in-
cludes video displays, car tracking monitors, flag information
(red/yellow etc.), pit information, lap counting, sector times etc.

• Timekeepers know the positions of race cars and gather infor-
mation from active transponders which automatically emit the
information necessary to identify a race car. In case of technical
problems, their manual backup is aided by video information.
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• Spectators find information on video walls, display walls, in real-
time on the internet and – most popular – on television. This
recently includes telemetric data (such as speed, acceleration,
RPMs, G-force, braking power), 3-D rendering for scene analy-
sis from different perspectives, ongoing lap times, pit lane times,
live updated time intervals between subsequent participants and
live car tracking.

However, apart from professional series, things look a bit different.
Most often there are no active transponders, which allow for auto-
matic racecar identification, due to financial reasons. Using passive
systems, such as photocells, however, demands manual effort to iden-
tify passing racecars and thus causes at least small delays until data
acquisition is complete. Furthermore, there is no gapless tracking of
racecars. Data is sparser compared to what can be acquired in pro-
fessional motorsports series. The reasons for that again are financial
obstacles which do not allow to use the same expensive data acquisi-
tion techniques as in professional series.

Nevertheless, the target groups as described above is also present
in amateur sports and could benefit from high-quality data acquisition,
processing and visualization. In particular, a live visualization of the
racecar movements is of interest for the whole target audience. Com-
mentators use it as a clue to generate an atmosphere of tension, race
directors use it to estimate which actions to take in case of an accident
and spectators simply enjoy the “live”-experience. Car tracking using
sparse data, however, is a challenge. In our work, we thus focus on the
following problem: tracking with uncertainties and its visualization.

Our goal is to process and visualize data in a way that simultane-
ously provides a maximum amount of information for the race control
and commentators, and presents the participants’ progress in a smooth



and aesthetic way.
To this end, we focus on a kind of motorsports which belongs to

the so called individual time trials: hillclimb races. In a hillclimb
race, drivers depart one after the other – with some significant gap in
between – from the start along a road to the finish.

1.1 Car Tracking

Tracking of a racecar means to determine its position on the race track
at a given time. The race track is stored as a map containing potential
spatial positions with domain Ω ⊂ R2. For specific points in time
the actual position on the map is known whereas for other points the
position is generally determined using interpolation techniques.

2 RELATED WORK

This work combines movement estimation and visualization in 2D
space with uncertainty visualization techniques. Thus, we first focus
on movement visualization in general, then discuss work regarding
movement uncertainty and finally take a look at the state-of-the-art for
race tracking in business and industry.

Visualization of movements is a common research field. There is
recently a growing interest in the Visual Analytics domain, mainly fo-
cusing on big data and related challenges like aggregation and sense-
making [1], [9]. This work, however, focuses on visualization of in-
dividual movements. A lot of such work has been done in the field
of animal tracking and visualization. In [10] movements of whales in
3D space are visualized. Others also take tracking inaccuracies and
uncertainties, e.g. from low frequent sampling into account: Mostafi
summarizes uncertainty visualizations of animal tracks before present-
ing his own system MarineVis [5]. One of the summarized techniques
is specified in [6]. Patterson et al. address the problem of tracking in-
accuracies. To overcome this issue, they apply a statistical approach,
called state-space modelling and present results showing hypotheti-
cal movement pathes and their uncertainties. Jonsen et al. develop a
framework applying similar techniques to a seal pathway dataset [2].
Lodha et al. [3] address computation and visualization of uncertainties
of moving particles in 2D and 3D space based on previous particles
and velocity, and present three visualization techniques. In contrast to
our work, however, they do not deal with sparse data and as the data
does not stick to a track different aspects have to be considered. Re-
garding sports data Pingali et al. provide insights into performance,
style and strategy in sports (i.e. tennis) using motion trajectories from
multi-camera tracking [7].

We have not found publications about uncertainty visualization ap-
plied to individual movements on a fixed track such as in our field of
application: motorsports. However, some techniques have established
in the industry and business. For example, sector-wise interpolation
seems to be dominant in the Deutsche Tourenwagen Masters, which
we have not checked technically, indeed. Nevertheless, this impression
can be derived from official promotion videos of the corresponding
timekeeping company [11]. In amateur motorsports, however, track-
ing is either not used at all or done as whole-track interpolation.

We have collaborators who are timekeepers in amateur motorsports
and make use of a simple whole-track interpolation technique for car
tracking (see Figure 1). Their experience is that even a simple kind
of visualization is helpful to conceive which cars will reach the finish
line in the near future and thus highly appreciated by the target groups.
These visualizations are streamed to monitors both for spectators and
for commentators. They are even integrated into video streams which
are available on web pages and also include video data from surveil-
lance cameras. Hence, it is possible to follow a racecar both on a
virtual map and on camera images at the same time.

3 CAR TRACKING WITH UNCERTAINTIES

Dense and reliable tracking can be achieved by a fine-grained acqui-
sition of a car’s actual position. Considering the sparse nature of data
acquisition in amateur motorsports, this is not perfectly possible there.
In the following, we discuss tracking for an individual participant.

Fig. 1. State-of-the-art visualization from our collaborators.

3.1 Interpolation-Based Tracking
The first assured information that is available for a car on the race track
is the time of its departure. In the simplest (and worst) case this is the
only assured information available until the car crosses the finish line.
Each position in between is purely estimated, using the time which
elapsed since depature tcurr and an estimated (constant) candidate (=
reference) time tre f for the whole heat. The quality of such tracking on
the one hand depends on how good the real time for the current heat
matches the estimated time tre f . On the other hand it depends on how
driving physics (acceleration, braking, speed in bends) is estimated
from the map of the race track and used for (nonlinear) interpolation.
The interpolation is applied using a mapping F : [0,1]→ Ω from the
estimated percentage pt of elapsed time defined as

pt =
tcurr
tre f

to a spatial position on the map of the race track. The question how to
determine tre f will be discussed later. If it is too small, pt > 1 eventu-
ally holds and the position will be cut to the last possible position on
a map (by setting pt = 1) . If it is too big, pt will never reach 1 and
tracking is stopped before reaching the last possible position.

In contrast to the standard case in car navigation, where actual po-
sition updates come periodically and the tracking error (difference be-
tween real and estimated position) is bounded by the speed of the car
and the update interval, tracking on race tracks is different. It is rather
comparable to satellite navigation when a car is located in a possibly
long tunnel. Tracking is continued preserving the last known speed
along the path of the tunnel on the map. However, if the car has an
accident in the tunnel, no updates about the actual position are made
and thus the tracking error is only bounded by the target of the trip (if
available). On a race track there are not more than a few points where
positional updates can be detected. If a car on a race track has an ac-
cident, the next update will hence either come arbitrarily late or never,
leading to a maximum tracking error and high uncertainty.

3.2 Computation of tre f

In order to apply live tracking, the progress of each participant has to
be estimated. Our way of choice is to estimate a reference time tre f
and compute pt as in Section 3.1. If sector times are available we
additionally estimate for each sector i (out of n sectors) the portion
rt,i ∈ [0,1] of tre f how long a racecar stays in it (∑n

k=1 rt,k = 1 holds).
There are different ways to estimate tre f for a participant which

are appropriate in different situations. For example one could use the
following strategies:



1. We already have run times from earlier heats:
As each participant tries to be as fast as possible, they tend to
be at their limit with only small speed changes between different
heats. We thus may take a function of her run times as a predictor.
This may e.g. be the median, the maximum or the last time.

2. We do not have any run times from earlier heats, but from other
participants:
Often racecars start in some specific order depending on the
properties of their cars in such a way that comparable cars fol-
low each other and the run times vary smoothly and decrease (or
increase) more or less monotonically. Thus, a function of the run
times from the last participants may be a good estimate for the
run time of the current participant.

3. We do not have any run times, yet:
An estimate can be either given manually for each class of com-
parable cars or generated automatically from earlier competi-
tions on the same race track.

The estimation of tre f can further be guided by a detection of changes
in the exterior conditions caused by weather changes or track degrada-
tions. These are likely to lead to significant, montonic overall changes
in the run times.

In the same way the portion rt,i of residence time in sector i can
either be estimated globally for all participants or individually for each
one.

3.3 Live Acquisition of Sector Times
As stated in the introduction, data acquisition in amateur motorsports
is in general done manually. This, however, causes delays until data
acquisition is complete. Delays may transfer to the tracking. As the
tracking is running live, delays in the correction of tre f , which we will
describe in the next section, increase the uncertainty. Now, we will
focus on how to leverage this problem.

In addition to the computation of tre f , we can compute some tre f ,i
for each sector i. When an intermediate time measurement at the end
of sector i is obtained and the corresponding racecar has to be identi-
fied among all the racecars that are on the track, we proceed as follows:
For each participant x on the race track we compare the elapsed time
tcurr with the summed reference times up to the sector i. The latter
gives an estimation of how much time is likely to have elapsed until
the end of sector i for participant x. We then assign the time measure-
ment to the participant that minimizes the following expression:

Err(x) = |tcurr(x)−
i
∑

k=1
tre f ,i(x)|

This expression measures the deviation between currently elapsed
time and the estimated elapsed time until the point of measurement.
Minimizing it, manual race car identification can be replaced by au-
tomatic identification (for intermediate measurements) which on the
one hand reduces workload for the timekeepers and on the other hand
avoids delays in data acquisition.

3.4 Integration of Live Data
Whenever there is some kind of estimation there is also some chance
that it fails. In our case this means that a racecar’s actual position
differs from the estimated one. This happens due to irregular con-
ditions in either the data that is used for estimation or in the current
heat caused by accidents, driving errors, technical problems or the
external factors mentioned in Section 3.2. All these principles have
different consequences: differences in external circumstances as well
as technical problems are likely to cause changes in all parts of the
track whereas driving errors may only affect a single part. The conse-
quences of accidents, however, reach from the lose of time on a single
part of the track over a slower continuation on all following parts up
to a complete cancellation of the heat.

In case of a severe accident that prevents the racecar from continu-
ing, the race control will provide this information and tracking can be

stopped manually. In all other cases, tracking continues and if sector
times are available, they can be used to correct the estimation.

There are two data-dependent parameters for tracking: tre f and rt,i.
Both can be adjusted live.

3.4.1 Adjusting tre f

There are in principal two possibilities to correct the total time tre f in
case of an estimation error:

1. We simply transfer the difference of estimation and actual sector
time to tre f (additive correction). In this case, we assume a single
change in this sector without affections of the following ones.

2. We assume affections of the following sectors and estimate them.
In this case, however, the effects on the speed in the following
sectors are unclear. Nevertheless, trying to adjust the estima-
tion according to this assumption would rather lead to a multi-
plicative correction: the estimated time for the remaining sec-
tors would be weighted by a factor describing the assumptions
on speed changes.

Some of the causes which would require a correction of the second
type, such as weather or track condition changes, can be handled by
global adjustments of tre f a priori. As the cause for the remaining
estimation errors cannot be determined, it makes sense to use the first
– more conservative and simpler – type of estimation correction.

3.4.2 Adjusting rt,i

If we simultaneously adjust the relative temporal sector portions rt,i for
the participant, the estimation of the current sector from the portion of
elapsed time pt is eased. Whether this is desired or not may depend on
the type of visualization and its focus. Furthermore, it does not have
effect on purely interpolating techniques as described in Section 4.

4 VISUALIZATION

Tracking is often visualized as the progress of circles (annotated with
information for racecar identification, such as start numbers) along a
virtual race track. According to racing computer games we call them
ghost. To this end, some background image or an interactive map con-
taining an image of the race track is necessary which displays the track.
Additionally, we need an internal representation of the race track to
guide the ghosts. This can be obtained by a manually generated chain
of connected lines approximating the race track or by a more evolved
routing algorithm.

4.1 Integrating Additional Information

In the simplest case, we do not have any additional information. Then,
the interpolation is applied to the whole-track which we call whole-
track interpolation. In the presence of additional information, in par-
ticular sector times, the tracking can be updated live. The question is:
how to use this data for visualization? There are mainly two possibil-
ities: strictly enforcing interpolation or allowing for approximation.

4.1.1 Sector-Wise Interpolation

Sector-wise interpolation can be enforced by subdividing the map into
sectors and interpolating between them separately. In this case, we
need a reference time tre f ,i and the elapsed time tcurr,i for each sector
i individually. tre f ,i can be computed as tre f ,i = rt,i · tre f . Advantages
of this method are the rather simple implementation and - in case of
complete and correct data - to reliably visualize in which sector of the
race track a car can be found. The main disadvantage is that - except in
case of a perfect match between real times and estimated times - ghosts
will either stop at sector borders (if tre f ,i too small) or will jump to the
next sector i+1 (if tre f ,i too big).



4.1.2 Sector Approximation

The less strict case is to allow the system to only approximate sectors.
This means that a ghost is allowed to pass sector borders earlier or
later than the actual time of passing. To this end, only a map-global
reference time tre f is held, which, however, is not constant as in the
cases above, but can be adjusted with respect to the new information.
Thus, the sector times influence the tracking procedure, but in a rather
indirect way which allows for a smoother, delayed adapting of the
tracking visualization. Especially in case of small estimation errors
this allows for a more aesthetic visualization without sacrificing too
much precision. Furthermore, this leads to interrupt-free tracking even
if some sector time is missing.

4.2 Nonlinear Movement
In Section 3 we introduced car tracking using linear interpolation. As a
consequence, the time that a racecar remains in some part of the virtual
race map is proportional to the length of the part. In other words,
the ratio ps of track length which a driver already passed equals pt .
In this case driving physics – manifesting as reduced speed in bends,
acceleration or braking – is not considered. In case of sector-wise
interpolation this is slightly leveraged as the different tre f ,i at least give
information about the average speed in each of the sectors. However,
this technique is visually not robust even against slight time deviations
between the real sector times and their estimates tre f ,i.

There are two types of information which help providing a more re-
alistic estimation of the racecars’ position: the relative residence time
portions rt,i of different sectors and the geometry of the virtual map.

4.2.1 Integration of Temporal Sector Information rt,i

For each sector i we have an estimate for the temporal portion rt,i and
from the virtual race map we deduce its portion of the track length,
called rs,i. In order to let the ghosts (tendentially) stay in sector i for
the whole amount of time rt,i, we have to determine the current sector
i from pt as well as from all temporal sector portions rt,k and compute
the spatial position in this sector relative to its spatial start, called bs,i.
Afterwards, we map the relative temporal position pt,i in the sector to
the relative spatial position ps,i and add it to bs,i. We obtain the total
portion of track length ps:

Spatial start of sector i: bs,i =
i−1

∑
k=1

rs,k

Relative position in sector i: ps,i = pt,i ·
rs,i

rt,i

Relative position on track: ps = bs,i + ps,i

This mapping strategy is described by affine transformations from
temporal sectors to their spatial counterparts.

4.2.2 Respecting the Virtual Map’s Geometry

The same concept can be applied for respecting the virtual race map’s
geometry. We can compute another virtual map from the original one
where the individual segments are generated by transforming the orig-
inal segments depending on the underlying geometry.

• In order to achieve higher speeds on straight lines, we can shorten
them in the transformed map.

• In order to achieve lower speeds in bends, we apply prolongation.

• Acceleration and braking can be simulated by subdividing a
straight line into different segments of equal length which, in-
deed, are scaled differently. Increasing segment lengths simulate
deceleration, decreasing segment lengths simulate acceleration.

The segments of the new map are used to compute the spatial posi-
tion ps which is then reprojected onto the origninal map. This should
be done for each sector, if available, separately.

4.3 Smooth Visual Updates for Adjusted Estimations
Especially when using the sector approximation-technique for track-
ing, which tries to avoid stops and jumps in case of wrong or missing
data while, at the same time, allowing the integration of additional sec-
tor times, a smooth transition from the current state (consisting of tre f
and rt,i) to a corrected state (consisting of new values for tre f and rt,i)
is of sufficient interest.

As the computation of ps depends continuously on the current state,
a sliding transition to the new state within some time window transfers
to a smooth visual adjustment from the old spatial position of a ghost
to the new one (see Figure 2). If there is a correction of the estimated
data, the new state is stored separately, a time window is determined
after which the current state must have reached the new one and, as
time elapses, the current state is interpolated between the old one and
the new one. In the following, will discuss two ways to determine a
suitable time window.

4.3.1 Fixed Window Sliding

For fixed window sliding the size of the window wt is set to a constant.
The advantage of this technique is that one can garantuee that wt sec-
onds after a live data update, the visualization corresponds to the most
recent state. Two disadvantages are the arbitrary, and thus potentially
quite unnatural, speed of the ghost transition and moreover the fact,
that backward transitions are possible. In case of a racecar which is
significantly slower than estimated, it may happen that the spatial po-
sition of the ghost according to the new state after the time window
has passed is behind its estimated position according to the old state at
the time of the data update. Thus, the ghost transition would result in
backward motion.

Fig. 2. Estimation is behind. The estimated position (blue point) is
located behind the actual position (green point). The estimation has to
catch up.

4.3.2 Forced Forward Sliding

When forced forward sliding is desired, backward motion must be
avoided. Our intention is that the updated ghost at its estimated speed
and the old ghost at a slower speed shall meet at some meeting point
(see Figure 3). To this end, this meeting point (spatial position depend-
ing on the new state) has to be computed locating it sufficiently after
the ghost’s current position depending on the old state. The chosen
position of the meeting point depends on the intended minimal speed
for the ghost as well as on the length of the track which is available to
be used for transition. wt can be computed from the meeting point and
the ghost’s positions.

4.4 Uncertainty Visualization
As we deal with sparse data (i.e. two to eight measurements per heat),
the car’s position in the sectors is estimated, i.e. we are not sure about



Fig. 4. Drafts: a) The estimated position of the racecar is visualized using a blue circle. This circle is surrounded by a band showing the computed
area of uncertainty. b) Global opacity of the band is zero at the beginning of a sector and increases to 100% to the end of a sector.

Fig. 3. Estimation is in front. The estimated position (blue point) is
located in front of the actual position (green point). In this case forward
motion can only be guaranteed if the sliding time window is non-fixed
and determined by some meeting point in forward direction (red X).

the real position of a racecar until we get the next update from it pass-
ing a measurement point. For visualization on the one hand we want
to show the estimated position, allowing for an animation of the move-
ments instead of simply showing the sector times. On the other hand,
the users of such a visualization should be informed about the fact that
this position is likely but not necessarily true. Thus, we want to apply
uncertainty visualization techniques concerning different data charac-
teristics, which we will now discuss.

4.4.1 Uncertainty Band Based on Reference Data
Using tre f to estimate the current position, one could simply visualize
this position by drawing a ghost on the track. However, there may have
been earlier runs with faster or slower times, and we only know if the
current driver behaves similar when she reaches the next sector. We
thus suggest not only to visualize the estimated position but also an
area along the road where car is likely to be. To determine that area, a
reference data pool Dre f can be used, containing the nearest neighbors
such as similar runs, runs from comparable cars, etc. This data pool
could be updated online, meaning that for each new observation it is
recomputed, taking the new measurement into account.

A simple approach to visualize the uncertainty is to use the slowest
and fastest runs in Dre f as boundaries for the area of uncertainty. More
evolved techniques could compute probabilities using a kernel density
function such as proposed in [4] from the reference data or achieve
similar results by applying splatting techniques [8]. Independently of
which approach is chosen, Figure 4 a) shows a draft how the area of
uncertainty can be visualized. The blue ghost in the middle of the road

is the estimated position while the band shows the computed area of
uncertainty. Certainty is high at the ghost’s position and decreases to
the boundaries of the band, visualized by decreasing local opacity.

At the beginning of a heat, there are minimal time differences be-
tween the bounds, however increasing over time until the end of the
heat. Thus, we expect the band to be small at the beginning and grow-
ing over time until the ghost reaches the finish line. Having infor-
mation based on observations between sectors we can interpolate the
band’s size as shown in Figure 5.

Fig. 5. At the beginning of a heat all drivers share similar times, while to
the end the variance increases. This can be visualized with increasing
band size by interpolation between sector measurements.

4.4.2 Varying Global Band Opacity
Having defined how to visualize the area where it is likely for a driver
to be, we have n observations during a heat, giving the exact position
of that driver. Thus, at the time of a new measurement, uncertainty
visualization becomes useless as there is no positional uncertainty, and
becomes important again with increasing time after the measurement.
Hence, we suggest to hide the uncertainty band once a driver reaches
a new sector by setting its global opacity to zero and then increase the
global opacity to 100% before reaching the next sector. Figure 4 b)
outlines this idea.

5 CONCLUSION

We presented techniques to estimate and visualize the positions of
racecars based on sparse observations. To this end, we proposed sev-
eral approaches for estimation, based on reference data from earlier
heats. To achieve an informative and smoothly animated visualization
we considered using further information, e.g. from intermediate sector
times and bends. We also adressed the problems of stops and jumps
occuring in the visualization based on the gap between estimation and



reality. Finally, we presented ideas to visualize uncertainty introducing
an area of uncertainty in the visualization we call uncertainty band.

6 FUTURE WORK

In the future, we will implement the proposed ideas, and evaluate them
on real datasets from several hillclimb races. The data is provided from
a collaborator in the field of racecar timekeeping. Furthermore, we
want to evaluate the accuracy of the real time estimation using refer-
ence data, by comparing its results with post-interpolation between the
driver’s times. We expect that these results help us to solve two prob-
lems: First, we expect to better understand how several approaches,
e.g. geometry based transformations, improve the estimation. Second,
we want to find out which reference data suits best for the estimation
(e.g. sector times from earlier heats, similar drivers, similar cars) and
how to get that data automatically, using suitable distance functions.
We also want to improve and implement the proposed visualizations.
To evaluate different visualization strategies we will carry out a user
study. Lastly, we will develop a system containing the best approaches.

An advanced idea which can be investigated is to integrate data
from video surveillance cameras directly. They provide information
about the real positions of racecars at least for some parts of the race-
track. On the one hand, this information might be used for evaluation
the accuracy of our estimation at regions where no time measurements
are done. On the other hand, this information can be integrated live
into the estimation using computervision techniques. In the latter case,
motion can be detected and registered to estimated positions: from
the estimation we get the information which racecar is moving in the
region and from the camera stream we get the information where it
exactly is. Nevertheless, this registration is a challenging task as (au-
tomatic) mappings from the cameras perspective onto the virtual map
are necessary and identification might be tricky (e.g. in case of severe
violations of the assumptions behind our estimation strategy). More-
over, it is an open question how to estimate uncertainty using video
data without reliable racecar identification.

Even these problems might be tackled using identification tech-
niques based on computer vision. Neverthless, when including more
and more computer vision jobs, problems concerning the realtime per-
formance arise with increasing impact.
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